DEPARTMENT OF HEALTH

PFAS Regulations – State Perspective

Environmental Law Institute September 12, 2018

Ginny Yingling | Hydrogeologist – Minnesota Dept. of Health

PFAS in the United States

Source: ITRC (2017); image reprinted with permission of Jeff Hale, Kleinfelder.

Target analyte lists still evolving

Analyte Na	ime	Acronym	CAS Number
Perfluorotetradecanoic acid*		PFTreA**	376-06-7
Perfluorotridecanoic acid*		PFTriA***	72629-94-8
Perfluorododecanoic acid*		PFDoA	307-55-1
Perfluoroundecanoic acid*		PFUnA	2058-94-8
Perfluorodecanoic acid*		PFDA	335-76-2
Perfluorononanoic acid*		PFNA	375-95-1
Perfluorooctanoic acid*		PFOA	335-67-1
Perfluoroheptanoic acid*		PFHpA	375-85-9
Perfluorohexanoic acid*		PFHxA	307-24-4
Perfluoropentanoic acid		PFPeA	2706-90-3
Perfluorobutanoic acid		PFBA	375-22-4
Perfluorodecanesulfonate		PFDS	335-77-3
Perfluorononanesulfonate		PFNS	68259-12-1
Perfluorooctanesulfonate*		PFOS	1763-23-1
Perfluoroheptanesulfonate		PFHpS	375-92-8
Perfluorohexanesulfonate*		PFHxS	355-46-4
Perfluoropentansulfonate		PFPeS	2706-91-4
Perfluorobutanesulfonate*		PFBS	375-73-5
Perfluorooctanesulfonamide		PFOSA	754-91-6
Fluorotelomer sulfonate 8:2		FtS 8:2	39108-34-4
Fluorotelomer sulfonate 6:2		FtS 6:2	27619-97-2
Fluorotelomer sulfonate 4:2		FtS 4:2	NA
N-ethyl-N-((heptadecafluorooctyl)sul	onyl)glycine*	NEtFOSAA	2991-50-6
N-(Heptadecafluorooctylsulfonyl)-N-r	nethylglycine*	NMeFOSAA	2355-31-9

"What's So Special About PFAS?"

Table modified from Ducatman, 2018

	PFAAs	Dioxins & PCBs	
Highly water soluble	Yes	No	
Bind well to soil & sediments	Νο	Yes	
Degrades to some extent in the environment	No	Yes	
Bioaccumulate in fish * True for PFAAs with 8 or more fluorinated carbons (PFOS, PFNA, and longer-chain)	Yes*	Yes	
Bioaccumulate in lipids Complicates our understanding of	Νο	Yes	
"Proteinphilic" bioaccumulation and toxicity ppt in water	r Yes	Νο	
Drinking water is major exposure route	Yes	No	
Removed by conventional wastewater treatment ppb in serun	No	Maybe (TSS)	

UCMR3 – Inviting everybody to the PFAS party

- 2013-2015 list included 6 PFAAs (PFOS, PFOA, PFNA, PFHxS, PFHpA, PFBS)
- Municipal systems >10,000 and selected smaller systems
- Detected in ~4%, exceeded EPA LHAs in ~1.3%
- High RLs and sampled only at entry points, not wellheads

State standards and guidance

States are setting their own standards or guidance within available regulatory frameworks:

- Most have adopted EPA LHAs
- Others have set lower values (MN, NJ, VT)
- Driven by the PFAAs being found...and the target analyte list
- Mixtures:
 - Most states adopted EPA additivity of PFOS and PFOA
 - Minnesota has a TEQ-like process for PFOA, PFOS, PFBA, PFBS, and PFHxS
 - Vermont recently announced Σ PFOA+PFOS+PFHxS+PFHpA+PFNA must be <20 ng/L
- North Carolina has a non-promulgated value for GenX in drinking water
- Creates public confusion and makes risk communication very difficult!

				PFAS Analyte Concentration in Water (ug/L)													
	Standard /		Promulgated												PFDS, PFUnA, PFDoA, PFTrDA,		
	Guidance	Туре	Rule (Y/N/O)	PFOA	PFOS	PFNA	PFBA	PFBS	PFHxS	PFHxA	PFPeA	PFHpA	PFOSA	PFDA	PFTeDA	6:2 FTS	Gen-X
USEPA	HA	DW	N	0.07	0.07												
Charles Contact - March I for some	RSL	GW	N					400									
	RSL Calculation	GW	N	0.4	0.4												
U.S. States																	
Alabama (AL)	HA	DW	N	0.07	0.07												
Alaska (AK)	CL	GW	Y	0.40	0.40												
Arizona (AZ)	HA	DW	N	0.07	0.07												
Colorado (CO)	HA	DW	N	0.07	0.07							0.07					
	HA	GW	N	0.07	0.07												1
Connecticut (CT)	AL	DW/GW	N	0.07	0.07	0.07				0.07		0.07					
Delaware (DE)	RL	GW	N	0.07	0.07												
Delaware (DE)	SL	GW	N	0.07	0.07			38									
Levie (IA)	Statewide	Protected GW	Y	0.07	0.07												
IOWA (IA)	Standards	Non-protected GW	Y		1												
	Health-based MEG	DW	N	0.07	0.07												
Maine (ME)	DAO	GW	N	0.13	0.56												
	RAG	RW	N	0.05	1.2												
Massachusetts (MA)	Guidance Values	DW	0	0.07	0.07	0.07		2		0.07		0.07					
	HNV	SW	Y	0.42	0.011	· · · · · · · · · · · · · · · · · · ·											
wichigan (wi)	GCC	GW	Y	0.07	0.07												
	short-term HBV	DW/GW	O/N	0.035	0.027		7	3	0.027								
Minnesota (MN)	subchronic HBV	DW/GW	O/N	0.035	0.027		7	3	0.027								
	chronic HBV	DW/GW	O/N	0.035	0.027		7	2	0.027								
Nevada (NV)	BCL	DW	N	0.667	0.667			667									
New Hampshire (NH)	AGQS	GW	Y	0.07	0.07	1											
	GWQS	GW	Y			0.010											
	MCL	DW	0			0.013											
New Jersey (NJ)	MCL	DW	0			0.013											
nan an an ann an an an an an an an an an	MCL	DW	0	0.014													
	MCL	DW	0		0.013												
North Carolina (NC)	IMAC	GW	Y	2		Ĩ				· · · · · · · · · · · · · · · · · · ·							
		DW	N														0.14
Oregon (OR)	IL	SW	Y	24	300	1						300	0.2				
Pennsylvania (PA)		DW	N	0.07	0.07												
Rhode Island	Groundwater Quality Standard	DW/GW	Y	0.07	0.07												
Texas (TX)	Tier 1 PCL	GW	Y	0.29	0.56	0.29	71	34	0.093	0.093	0.093	0.56	0.29	0.37	0.29		
Vermont (VT)	PGWES	GW/DW	Y	0.02	0.02												
West Virginia (WV)	HA	DW	N	0.07	0.07												

Table modified from ITRC (June 2018) Table 4-1: https://pfas-1.itrcweb.org/factsheets/

Why are some states setting such low values?

- Longer chain PFAAs are highly bioaccumulative
 - Parts per trillion in drinking water = parts per billion in blood serum
 - Ongoing exposures = lifetime steady state concentrations
- Relative source contribution (RSC) > default 20%
 - RSC = 50% based on recent biomonitoring data of drinking water exposed pops.
- Variable, age-based intake rates (IR) much higher for infants
- Biological activity at very low exposures = lower "allowable" serum levels
- Significant potential exposure for babies born to exposed mothers
 - Placental transfer: PFOA ~60-200% of drinking water concentrations
 - Breastmilk: PFOA ~2.6-12% of maternal serum concentrations

Sources of Variability in State Standards

		Relative	Total		Method for Administerd		
		Source	Uncertainty		Dose conversion to		
State	Receptor	Contribution		Species	Internal Serum Level		
Alaska	Child	1	Based on EPA				
	(0-6 years) residential, non-cancer						
Maine	Adult	0.6	300	Mice, Rats	NA - used administered		
				and Monkeys	dose		
Minnesota	Infant exposure via breastmilk for 1	0.5	300	Mice	EPA Modeled serum		
	year, from mother chronically				concentration		
	exposed via water, followed by						
	lifetime of exposure via drinking						
	water						
New Jersey	Adult	0.2	300	Mice	Direct serum concentration		
North Carolina	Adult	0.2	30	Cynomolgus	Direct serum concentration		
				monkeys			
Texas	Child	NA	300	Mice	NA - used administered		
	(0-6 years) residential, non-cancer				dose		
USEPA	Lactating women	0.2	300	Mice	Modeled serun		
					concentration		
Vermont	Infant	0.2	2 Based on EPA				
	(0-1 year)						

Table used with permission from Shalene Thomas, Wood Group ⁹

Other state regulatory approaches

- Product labeling and consumer product laws (ex: CA, WA, OR ?)
- Chemical action plans (ex: WA)
- Designation as hazardous waste or substance (ex: CO, NY, VT, NJ, AK)
- AFFF bans, excluding DoD and FAA-regulated facilities (ex: WA)
- AFFF "take back" programs (ex: NY, MA)
- Effluent and surface water standards (ex: CA, MI, MN, OR)
- Risk-based soil and groundwater screening or cleanup values (ex: TX, AK, CT, VT, NH)
- Prioritized source inventories (ex: MN)
- Testing all public water supplies for PFAS (ex: MI)

ITRC PFAS Fact Sheets

- Available online [https://pfas-1.itrcweb.org/fact-sheets]
 - History and Use
 - Naming Conventions & Physical and Chemical Properties
 - Regulations, Guidance and Advisories
 - Guidance values tables updated monthly (US federal & states, international)
 - Environmental Fate & Transport
 - Site Characterization Tools, Sampling Techniques, & Laboratory Analytical Methods
 - Remediation Technologies & Methods
 - AFFF (to be published September 2018)
 - Tailored to the needs of state regulatory program staff concise, current, web-based

Other ITRC PFAS Products – in the works

- Technical-Regulatory Document (Oct.-Nov. 2019)
 - More in-depth exploration of current state of knowledge of PFAS
 - Includes stakeholder perspectives and case studies
- Training Workshops (Oct. 2018 June 2019)
 - 8-10 regional trainings (4-hr or 8-hr)
 - Aimed at state regulatory program staff (but others welcome)
- Risk Communication Toolkit (June 2019)
- Internet Based Training (Oct.-Nov. 2019)

More Information and References

ITRC PFAS documents: https://pfas-1.itrcweb.org/

MDH general PFAS Information and guidance values: <u>http://www.health.state.mn.us/divs/eh/hazardous/topics/pfcs/index.html</u> <u>http://www.health.state.mn.us/divs/eh/risk/guidance/gw/table.html</u>

MPCA PFAS Investigations:

<u>http://www.pca.state.mn.us/index.php/waste/waste-and-cleanup/cleanup-programs-and-topics/topics/perfluorochemicals-pfc/perfluorochemicals-pfc/perfluorochemicals-pfcs.html?menuid=&redirect=1</u>

ADD SERDP info?

Acknowledgements

- MDH Environmental Health Division
- MPCA Closed Landfill & Superfund
- Minnesota Public Health Laboratory
- Minnesota Geological Survey
- Valley Branch Watershed District
- West Central Environmental Consultants
- Washington County
- Interpoll Laboratories
- Barr Engineering
- 3M Company
- Wood Group (Amec Foster Wheeler)

- Weston Solutions
- Antea Group
- Agency for Toxic Substances and Disease Registry (ATSDR)
- U.S. Geological Survey
- Cities of Oakdale, Lake Elmo, Woodbury, Cottage Grove, Afton, Maplewood, Newport, Saint Paul Park
- Grey Cloud Island, West Lakeland, and Denmark Townships

Thank You and Disclaimer

This work was partially funded through a cooperative agreement grant from the Agency for Toxic Substances and Disease Registry (ATSDR) and the Center for Disease Control (CDC).

The opinions expressed are those of the author and do not necessarily reflect the official views of ATSDR, the CDC, the Department of Health and Human Services, or the Minnesota Department of Health.