Energy Management for the Utility of the Future: How Good is Good Enough?

Art Umble, PhD, PE, BCEE Global Wastewater Practice Leader NACWA Winter Conference
February 8, 2018
Napa, CA

Outline

- Utility of the Future: Resource Recovery Paradigm
- Brief Look at the Energy Profile
- Can we compare energy consumption?
- Is Energy Neutrality a Real Deal?
- Is Excellent Performance Necessary?
- Should there be a Different Way of Thinking?

Utility of the Future

New Paradigm for Municipal and Industrial Wastewater Treatment

Roadmap to a Resource Recovery Facility

Be Familiar with Current State-of-the-Science for Resource Recovery

How is Energy Demand Distributed?

How Much Energy Do We Consume?

Total Energy Consumption per Capita per Year (2014)

Source: IEA, 2016

Regional Energy Consumption Projections for Wastewater Treatment

Source: Electricity Use and Management in the Municipal Water Supply and Wastewater Industries; WRF/EPRI, 2013

Energy's Footprint in W & WW Sector

Source: Wilson, 2009; Meda and Cornel, 2010; Voutchkov, 2010; Lazarova et al., 2012

How Does the Wastewater Industry Benchmark in Energy Consumption?

Energy Consumption at Treatment Facilities - Process

Energy Consumption at Treatment Facilities – Process Equipment

How is Energy Consumption Distributed Across Plant Processes?

Energy Consumption in WRRFs

Energy Distribution in Wastewater Treatment by Unit Process

Source: Moore, L., University of Memphis, 2012

How Does the Wastewater Industry Benchmark in Energy Consumption?

Stricter Standards → More Energy!

Stricter Standards → More Energy!

The Case for Nutrient Recovery: Economics of Removal

How Does the Wastewater Industry Benchmark in Energy Consumption?

Loading Removal is a more appropriate metric

Should Energy Neutrality be Pursued?

Is Energy Neutrality a Reality?

Is Energy Neutrality a Reality? Reduce Demand

Source: Evaluating New Processes and Concepts for Energy and Resource Recovery from WWTPS with LCA"; Remy, C., et al.; Water Science & Technology, 73(5), 2016

Is Energy Neutrality a Reality? Reduce Demand

Impact of Biosolids Process Configurations on Energy Balance

Impact of Biosolids Pretreatment Process Technology on Energy Balance

What About Co-Digestion?

- CHP generally covers site demand for heat but not electricity without external carbon sources
- Food wastes:
 - 55-78% carbohydrates
 - 15-21% protein
 - 5-22% fats/lipids
- Food wastes can contain inhibitory substances

Should Full Energy Recovery be the Focus in Today's Economic Pressure-cooker?

How good is good enough?

Can we operate to "good enough" reliably and predictably?

Is "good enough" an appropriate ethic for the industry?

Source: "A Comprehensive Approach for Diagnosing Opportunities for Improving the Performance of a WWTP", Silva, C., et al.; Water Science & Technology, 74(12), 2016

Is there a Different Paradigm? Consideration of Capacity Utilization

Is there a Different Paradigm? Consideration of Capacity Utilization

Is there a Different Paradigm? Consideration of Performance

Is there a Different Paradigm? Consideration of Performance

Broader Perspective Enhances Energy and Financial Savings Potential

Identify options for improved energy management at utility and at the end-users

Define scenarios for implementing options into the urban water system

Ouantify the energysaving potential of options at both utility and City level

Stantec

Broader Perspective Enhances Energy and Financial Savings Potential

Measures for Energy Savings Potential and Cost-effectiveness

- 1 Active leak detection and pressure management
 - 2 Scrubber ventilation efficiency
- 3 Sewage pumping efficiency
- 4 Minimizing the use of DAF
- 5 Most open valve aeration strategy
- 6 Inverter speed control pump
- 7 Aeration optimization

Utility

Perspective

Options

City

Perspective

Options

- 8 Plant upgrade for biogas recovery
- 9 Existing STP reuse and minor recycling
- 10 Stormwater harvesting
- 11 Water-efficient clothes washer rebate
- 12 Water-efficient shower head rebate
- 13 Dual flush toilet rebate
- 14 Solar hot water system rebate
- 15 Alarming visual display monitors for shower
- 16 Plumber visit
- 17 Cooling towers upgrade
- 18 Irrigation and landscape efficiency

Supply-Side Options

Demand-Side Options

Broader Perspective Enhances Energy and Financial Savings Potential

- Water Use Distribution
 - 65% residential
 - 24% commercial/industrial
 - 11% non-revenue
- 1300 GWh saved for Utility
- 5800 GWh saved for City
 - Residential Conservation
 - Unaccounted-for water
- Utilities need incentives to look beyond boundaries

Summary

- Energy demand in Water & Wastewater treatment is costly at utility scales
- Benchmarking most useful when based on load, but sensitive to process and scale
- Energy demand is sensitive to regulation:
 O&M is critical
- Energy neutrality is real, but requires outside carbon sources to supplement current technology
- Pushing to operation capacity reaps energy savings
- Acceptable, as opposed to excellent performance, saves money, but is it an appropriate compromise?
- Utilities must go "outside the fence line" to realize benefits that accumulate from conservation across the community

