Overview of PFAS Technical Issues

Rula A. Deeb, Ph.D., BCEEM, PMP Senior Principal Geosyntec^D consultants

Outline

- Overview of PFAS
 - Nomenclature
 - Uses
 - Sources to the environment
- Key technical issues
 - Occurrence
 - Fate and transport
 - Toxicology
 - Regulations and drivers
 - Treatment
- Summary

Geosyntec[>]

Nomenclature

- Per- and polyfluoroalkyl substances (PFAS)
 - A family of synthetic organic compounds that contain multiple fluorine (F) atoms
- Incorrectly referred to as "PFCs"
 - PFCs are greenhouse gases
 regulated by the Kyoto Protocol
 - PFCs are one of the families of PFASs (all PFCs are PFASs, but not all PFASs are PFCs)
- Most well-known compounds
 - Perfluorooctanoic acid (PFOA)
 - Perfluorooctane sulfonic acid (PFOS)

- Chemistry
- C-F bond is shortest and strongest bond in nature
- Perfluoroalkyl substances
 - Compounds for which all hydrogens on all carbons (except for carbons associated with functional groups) have been replaced by fluorines
 - e.g., perfluoroalkyl acids (e.g., PFOA, PFOS)
- <u>Poly</u>fluoroalkyl substances
 - Compounds for which all hydrogens on at least one (but not all) carbons have been replaced by fluorines
 - e.g., fluorotelomer-based compounds
 - Carbon-hydrogen linkages allow for biotic and abiotic degradation

Chemistry

- PFCAs and PFSAs are a small fraction of PFASs
- Short-chain PFASs and fluorinated alternatives are replacing longchain PFASs
 - Perfluoroalkyl ether carboxylic acids (PFECAs) found in the Cape Fear River in NC

perfluoropolyethers (PFPEs)

Source: Dr. Detlef Knappe, NCSU

Geosyntec[>]

Uses

Surface treatments/coatings

- Carpet and upholstery
- Apparel
- Paper and packaging
- Non-stick cookware

Performance chemicals

- Chromium plating (mist suppression)
- Insecticides
- Lubricants

AFFF

- AFFF = aqueous film forming foam
 - Proprietary mixtures of fluorinated and hydrocarbon surfactants, water, corrosion inhibitors, solvents, few % PFASs
 - Only 3% of fluorochemicals produced are used in AFFF
 - 75% of AFFF produced used by military, and 25% used by oil refineries, municipal airports and fire stations, and tank farms
 - History
 - Mid 1960s-1970: 3M sole source supplier of AFFF
 - 1973: National Foam
 - 1976: Ansul
 - 1994 to present: Angus, Chemguard, Fire Service Plus
 - Multiple AFFFs likely used at most sites

Environmental Sources

- Private industry
 - Chemical manufacturing processes
 - Textiles and carpets
 - Heavy industry (chrome plating)
 - Petrochemical industry (AFFF systems)
 - Aerospace industry
 - Airports
 - Prop 65 and other product challenges (food packaging, clothing, carpeting)
- Military
 - AFFF
- Municipalities
 - Fire-fighting areas, airports, drinking water systems, landfills, wastewater treatment plants

Why PFASs are Emerging Now

- PFASs are not detectable using conventional analytical tools for environmental contaminants (e.g., gas chromatography)
- Commercially-available measurement techniques only recently available (last 10 years)

Geosyntec^D

Occurrence in Stormwater, Biosolids and Landfills

.

Clothing in Model Anaerobic Landfill Reactors Johnsie R. Lang ⁺ , B. McKay Allred [‡] , Graham F. Peaslee [§] , Jennifer A. Field [#] , and Morton A. Barlaz [†] [†] Department of Civil, Constructional, and Environmental Engineering, North Carolina State University, Box 790 North Carolina 27695-7908, United States [‡] Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-4003, United States [§] Department of Environmental and Molecular Toxicology, Oregon State University, 1007 ALS Bldg. 2750 Camp Corvallis, Oregon 97331-4003, United States	Raleigh, ates bus Way,
Environ. Sci. Technol., 2016, 50 (10), pp 5024–5032 DOI: 10.1021/acs.est.5b06237 Publication Date (Web): April 20, 2016 Copyright © 2016 American Chemical Society	
Occurrence and Fate of Perfluorochemicals in Soil Following the L	and
Application of Municipal Biosolids	Oxidative Conversion as a Means of Detecting Precursors to
Jennifer G. Sepulvadot, Andrea C. Blainet, Lakhwinder S. Hundalt, and Christopher P. Higgins*t	Perfluoroalkyl Acids in Urban Runoff
Colorado School of Mines, Golden, Colorado 80401, United States	Erika F. Houtz and David L. Sedlak
Metropolitan Water Reclamation District of Greater Chicago, 6001 West Pershing Road, R&D Department, Se Cicero, Illinois 60804, United States	Environ. Sci. Technol., 2012, 46 (17), pp 9342-9349 Publication Date (Web): August 17, 2012 (Article)
Environ. Sci. Technol., 2011, 45 (19), pp 8106-8112	A new method was developed to quantify concentrations of difficult-to-measure
DOI: 10.1021/es103903d	and unidentified precursors of perfluoroalkyl carboxylic (PFCA) and sulfonic (PFSA)
Publication Date (Web): March 29, 2011 Copyright © 2011 American Chemical Society	thermolysis of

Perfluorinated Acids in Air, Rain, Snow, Surface Runoff, and Lakes: Relative Importance of Pathways to Contamination of Urban Lakes

Seung-Kyu Kim and Kurunthachalam Kannan Environ. Sci. Technol., 2007, 41 (24), pp 8328-8334 Publication Date (Web): November 13, 2007 (Article) DOI: 10.1021/es072107t

Fate and Transport

- Sorption generally increases with number of carbons
- Transport related to charged state of PFASs
 - Anions > zwitterions > cations
 - Shorter chain lengths generally move faster
- Polyfluorinated substance
 - Potential to form PFSAs and PFCAs (abiotically and biotically)
 - Variable transport properties
- PFSAs and PFCAs
 - Not readily biodegradable
 - Not readily transformed abiotically
 - Generally high mobility

Toxicology

- Best toxicity data coverage for PFOA and PFOS
 - USEPA reference doses for human health
 - PFOS: reduced birth weight
 - PFOA: developmental effects in bones, accelerated puberty
 - Wildlife effects
 - Effects on liver and kidney
 - Reproduction
 - Aquatic toxicity data (fish, invertebrates) for some compounds

Other PFASs

 Limited information in peer-reviewed literature and chemical registration information (REACH dossiers, TSCA submittals)

Biological Fate

- Detectable in nearly any biological tissue
- Partitions to protein (proteinophilic), not fat/lipid
- Not metabolized, or metabolizes to persistent PFASs
- Bioaccumulates in animals and plants (uptake and water evaporation)

Chemical Group: Perfluorochemicals (PFCs)
> Measured in: Serum

Project: California Teachers Study (CTS)

- > Study Group: All
- Sample Collection Date: 2011

Geosyntec^o

Human Exposure Pathways

- Major^{1,2}
 - Drinking water
 - Incidental soil/dust ingestion
 - Diet (bioaccumulation)
 - Fish and seafood
 - Homegrown produce
- Usually insignificant or minor
 - Dermal absorption
 - Inhalation

- It's not just PFOA and PFOS
 - For example, dozens to hundreds of other PFASs in AFFF
 - Toxicity of other PFASs?
- Background exposure for humans
- No standard guidance of models for risk assessment (conceptual site models, sampling approaches, uptake factors, toxicity values)

Treatment

- Challenging and costly due to stability of PFOS and complexity of PFAS mixtures
- No destruction technologies currently available
 - "New era" of pump-and-treat
- Lack of proven (demonstrated) in situ treatment methods
- Available technologies do not address sorbed PFASs and precursors

Perfect Storm of Environmental Challenges

High-volume Releases Complicated and Expensive Remediation

Geosyntec[>]

Summary

- PFAS is more than PFOS and PFOA
- PFAS chemistry is complicated and mixtures are complex
- PFASs produced for decades and used in large volumes = potential for reopening closed sites or creating new sites
- Multiple states have issue standards/guidance for PFOS and PFOA (and other PFASs) in the absence of enforceable cleanup standards
- Treatment is challenging and costly
- This is not just a U.S. issue
- The state of knowledge continues to evolve

Contact information

Rula A. Deeb Phone: 510.285.2676 Mobile: 510.932.9110 rdeeb@geosyntec.com

Geosyntec[>]